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NATIONAL. ADVISORY COMMITTEE FOR AFRONAUTICS

TECHNICAT, MEMORANDUM 1415

“ LAMINAR FLOW ABOUT A ROTATING BODY OF REVOLUTION
IN AN AXTAL ATRSTREAM*

By H. Schlichting
1. INTRODUCTION

The flow about a body of revolution rotating about its axis and
simultaneously subjected to an airstream in the direction of the axis
of rotation is of importance for the ballistics of projectiles with
spin. In Jet engines of all kinds, too, an important role is played
by the flow phenomena on a body which is situated in a flow and which
at the same time performs a rotary motion. Investigations of
c. Wieselsbergerl regarding the air drag of slender bodies of revolution
which rotate about theilr axis and are at the same time subjected to a
flow in the direction of the axis of rotation showed a considerable
increase of the drag with the ratio of the circumferential velocity to
the free-stream velocity - increasing more and more, the slenderer the
body. Similar results were obtained by S. Luthander and A. Rydberg?
in tests on rotating spheres which are subjected to a flow in the direc-
tion of the axis of rotation. These authors observed, in particular, a
considerable shifting of the critical Reynolds number of the sphere
dependent on the ratio of the circumferential velocity to the free-stream
velocity. The physical reason for these phenomena may be found in the
processes in the friction layer where, due to the rotary motion, the
fluid corotates in the neighborhood of the wall and, consequently, is
subjected to the influence of a strong centrifugal force. It is clear
that the process of separation and also the transition from laminar to
turbulent conditions are strongly affected thereby, and that, therefore,
the rotary motion must exert a strong influence on the drag of the body.

*"Die laminare Strémung um einen axial angestroften rotierenden
Drehk&rper." Ingenieur-Archiv, vol. XXI, no. L4, 1953, pp. 227-24k.- An
abstract from this report was read on the VIII International Mechanics
Congress in Istanbul on August 27, 1952.

¢, Wieselsberger, Phys. z. 28, 1927, p. 8k.
28. Iuthander, A. Rydberg, Phys. Z. 56, 1935, p. 552.
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In the flow processes in the corotating layer of the fluid, one deals
with complicated three-dimensional boundary-layer flows which so far have
been 1little investigated, experimentally as well as theoretically. Th. v.
Karmin” treated at an early date the special case of a disk rotating in a
stationary liquid, for laminar and turbulent flow, as a boundary-layer
problem, according to an approximation method. ILater, W. G. Cochran® also
solved this problem for the laminar case as an exact solution of the
Navier-Stokes equations. A generalization of this case, namely the flow
about a rotating disk in a flow approaching in the direction of the axis
of rotation, for laminar flow, has been treated recently by H. Schlichting
and E. Truckenbrodt?. The result most important for practical purposes
are the formulas for the torque of the rotating disk; it is highly depend-
ent on the ratio of the circumferential velocity to the free-stream veloc-
ity of the disk.

For the general case of a rotating body simultaneously subjected to
a flow, J. M. Burgers6 gave a few general formulations. We have set our-
selves the problem of calculating the laminar flow on a body of revolution
in an axial flow which simultaneously rotates about its axisT. The prob-
lem mentioned above, the flow about a rotating disk in a flow, which we
solved some time ago, represents the first step in the calculation of the
flow on the rotating body of revolution in a flow insofar as, in the case
of a round nose, a small region about the front stagnation point of the
body of revolution may be replaced by its tangential plane.

In our problem regarding the rotating body of revolution in a flow,
for laminar flow, one of the limiting cases is known: that of the body
which is in an axial approach flow but does not rotate. The solution of

3. v. Kérmén, Z. angew. Math. Mech. 1, 1921, p. 235.
lLw. G. Cochran, Proc. Cambridge Philos. Soc. 30, 1934, p. 365.

5H. Schlichting, E. Truckenbrodt, Z. angew. Math. Mech. 32, 1952,
p. 97; abstract in Journal Aeron. Sciences 18, 1951, p. 638.

6. M. Burgers, Kon. Akad. van Wetenschappen, Amsterdam 45, 1941,
p. 13.

11t is pointed out that the turbulent case, for the rotating disk in
a flow as well as for the rotating body of revolution in a flow, mean-
while has been solved, in continuation of the present investigations, by
E. Truckenbrodt. Publication will take place later.- E. Truckenbrodt,
"Die Stromung an einer angeblasenen rotierenden Scheibe bei turbulenter
Stromung," will be published in Z. angew. Math. Mech.- E. Truckenbrodt
"Ein Quadraturverfahren zur Berechnung der Reibungsschicht an axial
angestrémten rotierenden Drehkorpern." Report 52/20 of the Institut fur
Stromungsmechanik der T. H. Braunschweig, 1952.
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this case was given by S. TomotikaB, by means of transfer of the well

"~ known approximation method of K. Pohlhausen9 to the rotationally symmet-

rical case. The other limiting case, namely the flow in the neighborhood

- of a.body which rotates but is not subjected to a flow is known only for

the rotating circular cylinderlO, aside from the rotating disk. In the

- case of the cylinder one deals with a distribution of the circumferential

velocity according to the law v = aRz/r where R signifies the cylinder
‘radius, r the distance from the center, and  the angular velocity of
the rotation. The velocity distribution as it is produced here by the
friction effect is therefore the same as in the neighborhood of a poten-
tial vortex. In contrast to the first limiting case (nonrotating body
subjected to a flow), the flow in the case of slender bodies which rotate
about their longitudinal axis in a stationary fluid does not have
"boundary-layer character," that is, the friction effect is not limited

to a thin layer in the proximity of the wall but takes effect in the
entire environment of the rotating body.

Very recently, L. Howarthl also made an attempt at solution for a
sphere rotating in a stationary fluid. This flow is of such a type that
in the friction layer the fluid is transported by the centrifugal forces

from the poles to the equator, and in the equator plane flows off toward
the outside.

When we treat, in what follows, the general case of the rotating body
of revolution in a flow according to the calculation methods of Prandtl's
boundary-layer theory, we must keep in mind that this solution cannot con-
tain the limiting case of the body of revolution which only rotates but
is not subjected to a flow. However, this is no essential limitation
since this case is not of particular importance for practical purposes.

The dominant dimensionless quantity for our problem is the ratio

Clrcumferential velocity

Free-stream velocity Uoo U,

where Ry 1s to denote the radius of the maximum cross section of the
body of revolution. The calculations must aim at determining for a
prescribed body of revolution the torque, the drag, and beyond that,
the entire boundary-layer variation as a function of Vm/U@. The

8s. Tomotika, "Laminar Boundary Layer on the Surface of a Sphere
in a Uniform Stream." ARC Rep. 1678, 1935.

9K. Pohlhausen, Z. angew. Math. Mech. 1, 1921, p. 253.
10y, Schlichting, “Grenzschicht-Theorie,” p. 63. Karlsruhe 1951.
llL. Howarth, Philos. Mag. VII Ser. 42, 1951, p. 1,308.
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particular case Vm/Ug.= 0 1is already known from the boundary-layer

theory established so far. Considering what has been said above, we
must not expect our solution to be valid for arbitrarily large Vﬁ/Um.

The upper limit of the value of Vy[U, for which our calculations

holds true, still remains to be determined. Presumably, it will lie
considerably above. Vm/U& = 1. '

2. THE FUNDAMENTAI. EQUATIONS

We take the coordinate system indicated in figure 1 as a basis for
the calculation of the flow. ILet (x,y,z) be a rectangular curvilinear
fixed coordinate system. ILet the x-axis be measured along a meridional
section, and the y-axis along a circular cross section so that the
xy-plane is the tangential plane. The z-axis is at right angles to the
tangential plane. lLet u, v, w Dbe the velocity components in the direc-
tion of these three coordinate axes. Furthermore, let R(x) be the
radius of the circular cross section, w the angular velocity of rota-
tion, U(x) the potential-thecretical velocity distribution, and
v = u/p the kinematic viscosity.

The equations of motion simplified according to the calculation
methods of the boundary-layer theory are for this coordinate system

§§.+ M _ g (continuity) (1)

du ve

W8 R, ou 40 ocu (momentum, meridional) (2)
X R dx

dv

WOV , uv dR , OV _ VQEK (momentum, azimuthal) (3)

ox R dx oz dz2

The boundary conditions are

z=0: u=0, v=vg=Rw, w=0; z=w: u=U(x), v=0 (4
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A solution of this system of differential equations for an arbitrarily
prescribed body shape R(x) with the pertaining potential theoretical
velocity distribution U(x) leads to insurmountable mathematical diffi-
culties. We use therefore the more convenient approximation method which
makes use of the momentum theorem. We obtain the two momentum equations
for the meridional and the azimuthal direction by integration of the

. corresponding equations of motion over 2z from the wall z =0 +to a
"distance =z = h > which lies outside of the friction layer.

For the meridional direction there results by integration of (2)
over  z, with consideration of the continuity equation (1) and after .
introduction of the wall-shear stress for the x-direction

Bu) '

Txy = Bl=— (5)
XO (

aZO

the momentum equation for the meridional direction

ddy ) 1 dr 24\ _ '%0
Ueg + U%;(e'ax + BX*> + § d—x—(Ue’sx + Vo 'ﬂy) = "5‘“ (6)

Therein, as is well known,

5% = f;( - %)dz (7)

is the displacement thlckness whereas
e}
9, = | 21 - Qg (8)
oV u
D) = \'s dz .
- L6 e

may be denoted as momentum-loss thicknesses for the x- or y-direction.
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In an analogous manner there results for the azimuthal direction by
integration of (3) over =z with consideration of the continuity equa-
tion (1) and introduction of the wall-shear stress for the y-direction

Vo T u(g—;’-)() | | (10)

as the momentum theorem for the circumferential direction

d (yr3 )= 2130
od-(1R3s, ) = -R ! (11)
Therein
f&
Doy = 4 V3 (12)
o do Uvg

has been introduced as the "momentum loss thickness due to spin.”

5. APPROXIMATION METHODS

(a) The Velocity Distributions

According to the approximation method of the boundary-layer theory
as given first by Th. v. Kdrmdn and K. Pohlhausen, the momentum equa-
tions (6) and (11) are satisfied by setting up suitable formulations for
the velocity distributions u and v which satisfy the most important
boundary conditions. For the present case, two parameters may still be
left undetermined in these equations for the determination of which the
two momentum equations are then available. As expressions for the veloc-
ity distribution, polynomials in the distance from the wall have proved
to be suitable, with the property that the boundary layer joins at a
finite wall distance =z = 5 the frictionless outer flow. The boundary-
layer thickness may be different for the meridionsl and the azimuthal
velocity component. Iet these boundary-layer thicknesses be Oy and

Sy, respectively; we introduce the dimensionless wall distances formed
with them

=t! - (13)
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For the velocity distributions u and v, we select polynomials of
the fourth degree in t and t', respectively. These contain five coeffi-
.. clents each so that, for determination of these coeffic1ents, we can
satisfy five boundary conditions each for u and v. "We choose the
following 10 boundary conditions:

2 2
t=0: u=0 VQ_E =gV _ Yo ar
dz= dx R dx
> (14a,b,ec,d,e)
t=1: u=U u_ o Pu _ g
9z dz2
P
2 ‘
t' =0: v = Vo = Rw 2V _ o
dz2
? (15a,b,c,d,e)
o) 32
x t'=1: v=0 & -9 IV -0
; oz 322 )

The boundary conditions (lh4a, b, ¢) and (15a, b, ¢) result immediately
from the fundamental equations (2) and (3) with (4) for z = 0 and
i z = ax or Sy. The remaining boundary conditions provide a gentle
! transition of the boundary layer into the outer flow. Taking these
g boundary conditions into consideration, one obtains the following poly-

nomials as expressions for the velocity distributions

U= oop - 2t3 4 th oy K%(t - 3t2 + 3t2 - tl*) (16)
U
Y -1 -2t 4 2613 - 4k (17)
Vo
' Therein
b 2 2 ‘, .
i K=§§_[Qu+<ZQ)H@} (18)
] . vV jdx U R dx
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is a form parameter of the u-velocity profile, which is analogous to the
form parameter A of the Pohlhausen methodl2. The velocity distributions:
ufU and v/vy are represented in figure 2.

Let the point of separation be given by the beginning of the return
flow of the meridional velocity component u(z) in the proximity of the

wall
ou =
(aZ )Z:O O

This yields

K = -12 (separation) (19)

The expression for the u-component is the same as in the Pohlhausen
method for the plane and rotationally symmetrical case. This guarantees
that our solution in the case without rotation, w = 0, will be trans-
formed into the solution of S. Tomotika and F. W. Scholkemeyer15 for the
nonrotating body of revolution. Introduction of the expressions (16)

and (17) into the momentum equations (6) and (11) yields two differential
equations for the still unknown boundary-layer thicknesses ax(x) and

By(x) or the quantities derived from them.

14

(b) The Momentum Equation for the Circumferential Direction

We present first the further calculation for the momentum equation
of the circumferential direction. With

T

Yo - yfav) - o
5 v(az)o eawa (20)

there results from (11), after division by w,

%{@Uﬁ}q} - 2.6?35 (21)

120f, H. Schlichting, "Grenzschicht-_Theorie,” p. 193.

13F. W. Scholkemeyer, "Die laminare Reibungsschicht an rotations-
symmetrischen Korpern." Dissertation Braunschweig 1943, Cf. H.
Schlichting, Grenzschicht-Theorie, p. 20k4.
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With introduction of the further parameters
: . 3
{wtagwﬂ e e e gy = X and A = EIV N . o .(22)
;o Oy B
as well as
342 . .
o= = , - (23)
and
ayu U dR '
g = Ol—=~ + — (21*')
GRS

one obtains from (21) the following differential equation for @(x)

49 _ a(K.a) (25)
dx U
' Therein is
G(K,A) = bgy - 20 (26)

a universal function of the two parameters K and A.

This function has been determined already by W. Dienemann.lLL in the
calculation of the temperature boundary layer on a cylinder (two-

dimensional problem).15 For the temperature distribution in the boundary
layer there we chose the same polynomial of the fourth degree as we did
for the azimuthal velocity distribution according to (17). According to
(12) we have

‘Because of

l“w. Dienemann, "Berechnung des Warmeilberganges an laminar umstrémten
Korpern mit konstanter und ortsveranderlicher Wandtemperatur." Disserta- .
I tion Braunschweig, 1951, Z. angew. Math. Mech. 33, 1953, p. 89.

l5with the symbols according to W. Dienemann there apply the
identities Hy Fg; and A =K.
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one obtains after calculation of the integral with the velocity distri-
butions (16) and (17) the quantity g as a function of K and A. -

According to W. Dienemann, there results

g0(K;4) = g1(2) + Kep(a) (27)
AS1: g(a) =1-25A-%A5+1—§—0A4

’ (28)

gpla) = L L. L 1.1 1 11

The function gO(A) as a function of A for various values of K is

represented in figure 3. Table 1 gives a few numerical values of the
functions gp(A) and go(a).

TABIE I.- THE UNIVERSAL FUNCTIONS g;(A) AND go(A)

ACCORDING TO EQUATION (28)

A g (8) 1008, (A)
0 0 0
.2 .0053 .036
A .0208 L1k
.6 0457 .205
.7 .0606 .2h9
.8 L0784 .291
.9 .0970 +329
1.0 L1175 . 364
1.2 L1614 23
1.k .2089 Rival
1.6 .2589 .510
1.8 .3109 .5kl
2.0 .3643 .568
2.5 .5021 .618
3.0 L6437 .651
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(¢) The Momentum Equation for the Meridional Direction

Further transformation of the momentum equation for the meridional

- == direction yields, if one introduces, according to Holstein-Bohlenl® and
analogous to (23) ' '

9% au
Z = = 282 29
v x ax ( )

the following differential equation for Z(x)

Therein 4
-
Fmﬁo=2f5-QX+X%)—%§§1+G9 %? (51)

exactly as G(K,A) in (26) a universal function of the two parameters
K and A. Individually, the following relationships apply:

7‘ .8 2
f folK) = X -3 . K _ _K 2
‘ o(K) 8 315 o5 ~ 9,072 (32)
B
i % _ 3 _ Kk
\ig f1(K) = " 10" 120 (33)
E‘.
i 8. %  T1(K)
? Ta(K) = X = (34)
2 Sy fy(K)
{ A Bx §y
== == (35)
fo(K) B, 9, S,
] ,
- X0 0% _ (o) %% _ 4 .k
50 -2 ($) FE-rBw o)

16Cf. H. Schlichting, Grenzschicht-Theorie, p. 195.
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= 23, (37)

fo = 126

g<:0” kc’a

The abové functions of K are already known from the calculation of the
boundary layer of the two-dimensional case.1T

The connection between Z and K results from (18), with considera-
tion of (29) and (32), and is

2
2 au VO)Ud.R
KfEa<(K) = Z|—+ |—=] == 8

o~ () [dx (U R ax (38)
Taking X = 2U', from (29), into consideration, one may write thls because
of (32) also in the form

2 ' 2
Vo |\ U R' 37 K K2
—_ — —| =X = - -
* E * <U> R U'] . K(Bls 95 9,072> (29)

In figure 4 the universal functions f(, fo, f3, and K are

represented as functions of X*. At the point of separation, for arbi-
trary rotational velocity, one will have, because of K = -12, the
parameter X¥ = -0.1567. At the stagnation point, without rotation,

K =L4.716 and X* = 0.05708, whereas with rotation the values at the
stagnation point are dependent on the spin parameter v /U (cf. the

following section). From (38) the form parameter K can be determined
when Z 1is given. Furthermore, for the later calculation a comnnection
between the parameters A, g3, ©, Z, and K 1s needed. There results

according to (22), (23), (29), and (32) as follows

1, (K,b) = E £6(K) (40)

The two differential equations (25) for ©(x) and (30) for Z(x)
are two simultaneous differential equations coupled by the universal
functions G(k,A) and F(K,A). In the case of the nonrotating body,
Vg = 0, the coupling is eliminated since then, according to (31), the

function F becomes independent of A and remains dependent only on K.

17ce. mH. Schlichting, Grenzschicht-Theorie, Chapter XII.
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In this case, one can first determine Z(x) from (30), and subsequently
-6(x) from (25). This solution for ©® has - it is true - no physical
significance. It serves merely for giving the limiting value for.
%Qi}”ani‘shiﬁg"speed-of ‘rotation.” o o L

!

[
3 ‘ : (d) The Tnitial Values at the Stagnation Point

At the stagnation point where U = 0, the two differential equa-
tions (25) and (30) have a singular value since in both equations on
the right side the denominator vanishes. In order to obtain at the
stagnation point initial slopes of finite magnitude, dCde and 4z /fdx
finite,. the numerators also must disappear in these two equations for
the stagnation point. This requirement yields the initial values of
the parameters Kb and Ay at the stagnation point. For the potential

flow there applies at the stagnation point

x—>0: U(x) = Uy'R = aR ;—‘1‘; =1 (41)

e

The initial values of the meridional equation are obtained from
F = 0 according to (31)

2
f5o-2>b->bf20->b[l+%ﬂo(f)]=o

With

Kofoo? = xo[l . (3\2]

according to (38), with

according to (%6), and h, according to (37), there results after a
brief calculation

L i =-soh:

l+/w2=137_ 29 . 1 .2 25
&)

K
]

T KT R TTIRETRS

(k2)

- K = -
210 2,520 © ~ 3,02k © 1280
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For a given speed of rotation w/a, this is the first equation between
the initial values Ky and A,y. For the case without rotation, w = O,

the boundary-layer thickness ratio AO drops out from this equation,
and an equation for the initial value Ky only remains which reads

5Ly 29 g 2 1 3 _ :
2+ 1050 ¥ 35,5500 * 3054 0 © (¥3)

The physically useful solution of this equation 1s

(KO)M - K = 1716 (kk)

as known according to S. Tomotika.

For the initial values of the azimuthal equation, one obtains from
G = 0 according to (26)

280 (K0+%0) - o(Kos2%) = O

Because of
2
5%

9(Kos20) = hagp = hesooPAP—

according to (24) and
2—-
KO=_a8x_Ol+(9.)\2
v a
according to (18) and because of (27) one obtains after a short inter-
mediate calculation

Ko

B . > (45)
o @)2 2[e1(40) + Kogz(20)} 40

For a given speed of rotation w/a, this is the second equation between
the initial values Ky and Ag.
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For the case without rotation; o = 0, one obtains from (45) with
Ky = Kyp = 4,716  according to (44) for the initial value of’

"‘"””(Ao) o = 200 the equation
1 - 9.4328007 [gl(aoo) . 4. T16g, (AOO)] =0 (46)

Hence results with g3(A) and gp(A) according to (27) and (28)

oo = 0.915 (%7)

The ratio of the boundary-layer thicknesses A = 5y/ax for the azimuthal

and meridional veloeclty distribution therefore lies near 1 which is
physically plausible.

The two equations (42) and (45) now represent, for prescribed
angular velocity w/a, two equations for the initial values Kg and Ag.

A solution was obtained by determining from both equations the values of

2
Kafll + [& as a function of Ay for various fixed values K.
0 a 0

Hence, the initial values indicated in table 2 result. These values are
presented in figure 5 as a function of w/a. It was found that for

values of w/a > 0.815, no usable initial values of Ko and Ay exist;
that is, our method fails for these larger values of /a. The limit
beyond which our calculation method fails coincides with the value K = 12

of the form parameterlB. The initial values Xy, Xp¥*, and gpg deter-

mined from the initial values Ky and /4y are represented in figure 5
and table 2, as a function of w/a.

TR T AN e e

18For K > i2, because of the effect of the centrifugal forces, it

is entirely possible in the present case to obtain velocity profiles
with u/U > 1.

-
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TABLE 2.~ INITTAL VALUES AT THE STAGNATION POINT

¥
ci) L 4, 100Xy 100%y %goo
0 4k.716 0.915 5.71 5.71 0.0629
221 5 .908 5.71 5.99 L0632
L5k 6 .882 5.70 6.89 L0640
679 8 .838 5.69 8.32 .0651
.785 10 .781 5.69 9.19 L0661
815 12 .T26 5.69 9.49 .0664

Finally we obtain the initial value for 272 simply in the following
manner with Uy' = a

% ' (18)

a

ZO=
The initial value for © results with oy = 2gpg according to (24) as

%0 (49)

=

(%:

The expression for the velocity distribution used here (parabola of
the fourth degree for u and v) is different from that of our former
caleulationl9 for the rotating disk in a flow. It must be expected,
however, that the boundary-layer parameters of the rotating disk in a
flow should agree approximately with those at the stagnation point of
the rotating body of revolution if both methods are to yield usable
results. We give this comparison for the momentum-loss thickness in
x-direction (8) at the stagnation point and for the meridional component
of the wall shear stress at the stagnation point. The dimensionless
momentum-loss thickness at the stagnation point is according to (29)
with Ux___o' = a

ﬂxoﬁ = o (50)

19see footnote 5 on page 2.
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:The meridional component of the wall-shear stress at the stagnation
" point (TXO) 0" Tro is according to (5), (16), and (32)
X=

o

' The values calculated accordingly are compared with those of the rotating

disk in figure 6.20 The agreement up to the validity limit of our cal-

~culation (wfa = O. 815)‘15 quite satisfactory.

Hence we conclude that our present calculation ylelds satisfactory
results in the entire range 0 = w/é < o. 815.

Iy, TORQUE AND FRICTIONAL DRAG

(a) Torque

The entire torque of the body of revolution may be easily ascer-
tained from the results of the boundary-layer calculation in the
following manner: The contribution of an element of the body of revolution
with the radius R(x) and the arc length dx is (fig. 7)

M = -2xReT, dx

Yo

A
M = -2x Ty Reax (52)
b 0

where x, signifies the arc length from the stagnation point to the

point of separation. Taking the momentum theorem for the circumferential
direction (11) into consideration, one obtains

and thus the total torque

20yhereas the values for the wall-shear stress could be taken
directly from the report referred-to in footnote 5 (p. 227, table 2),
the values for the momentum-loss thickness were calculated subsequently
with application of equation (8) with the velocity distributions indi-
cated there.
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M = 2ﬂpw[§5UﬂX?]o = enpRA5UAﬂXyA - (5%)

where the subscript A denotes the values at the separation point.
From the boundary-layer calculation, one knows the value of the momentum
thickness due to spin at the separation point in the dimensionless form

EEZA /HEEE =B : (54)
Ry v

where R, is assumed to denote the radius of the maximum cross-sectional
area.

If one introduces - in the same manner as for the rotating disk -
a dimensionless spin coefficient by

M
Cu = o = (55)
5
Eﬂng

one obtains

Yo |/ _ uﬁB<RA>3U (56)
Um

where Vp = Rm¢ is the circumferential velocity of the maximum cross-

sectional area. Since, as the completely calculated examples show, the
dimensionless momentum thickness due to spin B varies at the separa-
tion point only a little with Vm/Um, ¢y is in first approximation

proportional to U§/Vm and inversely proportional to the Reynolds
number VU@Rm/v.

For the case of the rotating disk in a flow, with the radius Ry = R,
one obtains because of Ry = R, U, = aR from (56) in combination

with (54)
f-2
Bv_‘”. ey = LLmey \/%\/i- . ~(57)
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and with the numerical value

€00
) = | —_—t = 0_25]_
oV 2 Jyfaco
5 .
’R [V} _ ,a
T CM —_ 5.15 g

in very good agreement with the former investigation?l where the numeri-
cal value is 3.17. '

_..according to (49)

(b) Frictional Drag

The frictional drag of the rotating body of revolution may be deter-
mined by integration of the wall-shear stress components TXO. A sur-

face ring element of the body of revolution with the radius R(x) and
the arc length dx (fig. 7) yields the drag

aw = 21{RTXOdJ_( (58)

Therein X 1is the coordinate measured along the body axis. Integration
from the stagnation point x = 0 to the separation point EA, where

Txo = 0, yields

W = 2x ; TxRAX (59)

We shall refer the drag to the maximum cross-sectional area ane and
define the drag coefficient

Cw = ———-——-—W (60)

2lef. footnote 5 on page 2, equation (49a).
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Since we obtain the wall-shear stress in the dimensionless form

p;faJ*'ZE‘L: T G

we may write for the drag coefficient

U R =)+‘LSEA/R1D R X 6
VT "Ry Ry (62)
5. EXAMPLES
(a) Sphere

As the first example, the friction layer on the rotating sphere was
calculated. When Ry signifies the sphere radius, x the arc length,

and x/hm = @ the center angle measured starting from the stagnation
point, the radius distribution is

R(x) = R, sin ¢ o . (63)

TS,

and the theoretical potential velocity distribution

U(x) = gUm sin @ (6k4)

The velocity gradient at the stagnation point is

dx f._o 2 Ry

<V_m) _WBy o (65)
(0]

and thus
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‘Since, according to the explanations in section 3, the calculation can
“be carried out only for afa < 0.815, we must limit ourselves to

Ve £ 2 0.815 = 1.22.

The solutions are obtained by numerical integration of the two simul-
taneous differential equations (25) and (30) for the two cases Vm/U@ =0

‘and 1. The calculation scheme is given in table 3. The results for
further values of Vp /U  could hence be obtained conveniently by inter-
polation. The case V, U, = O (nonrotating sphere) agrees with the case

of Scholkemeyerza. The results of the calculation are represented in
‘table 4 and figures 8 to 12.

TABLE 3.- CALCULATION SCHEME FOR THE SOLUTION OF THE TWO
SIMULTANEOUS DIFFERENTIAL EQUATIONS (25) AND (30)

o prescribed
Z, X X* K £, £, £
dr au v o] 2
¢ | x { R(x) == F u(x) Ex—:U' vg = oR 3
Inditial =ZU'| Eq. (39) | Fig. L4 Fig. 4 {Fig. 4] Fig. 4
value initial
given value
(eq. (48)) (table 2)
. Given To be calculated
«—— hody form and potential flow——>» | & line by line —
0 2 A " Yo)? o, F oz VAR C g ®| e
) [ goA 8o o %, ax vl ax v+l
Initial Eq. (24) | Eq. (u0)] Fig. 3| 1502 = 23 |gq. (31)| Bq. (20) Eq. (26) | Ea. (25)
value A 126
(eq. (49))
< ; To be calculated line by line

TABLE 4.~ POSITION OF SEPARATION POINT AND OF THE TORQUE IN

DEPENDENCE ON Vp, U, FOR THE ROTATING SPHERE IN A FLOW

Spin Separation
parasmeter, point, Torque,

Viy o Vo "LRmU

ﬁ: Pa Uy v K
0 108.2 9.15

25 108.0 9.14

.50 107.3 9.06

.15 106.2 9.03
1.00 104.9 8.95
1.22 103.5 8.85

22Footnote 1% on page 8.
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Figure 8 gives the variation of the form parameter K of the merid-
ional component of the velocity distribution in the boundary layer. The
initial values KO at the stagnation point are immediately given in

table 2 with equation (65). At maximum velocity, ¢ = 90°, K is,
according to (18), equal to zero for all Vm/Ug, because in a sphere at

the point where dUfdx = 0, also dRfdx = O. The value K = -12 gives
the position of the separation point A. In figure 8 the variation of
the boundary-layer thickness ratio A = sy/sx is also plotted; it always

lies close to 1 and also changes only little with vm/u&. Figure 9 shows
the variation of the momentum thickness due to spin ﬁxy- The curves for
various Vm/U& almost coincide. The same is true for the momentum-loss
thickness J, and the friction-layer thicknesses &, and ay. Figure 10

shows the variation of the meridional and azimuthal component of the
wall-shear stress. The meridional component X0 increases with the

spin coefficient Vm/U@ only a little whereas the azimuthal compo-
nent Tyo in first approximagtion is proportional to the spin coeffi-

cient Vg U@. The position of the separation point as a function of
the spin coefficient Vﬁ_ . 1s given in table 4., TFor the nonrotating

sphere @, = 108.2°, and for Vﬁ/U@ = 1.22 the separation point shifts
forward to Py = 103.5°., This displacement of the separation point

because of the rotation is due to the effect of the centrifugal forces
and is, clearly, immediately plausible. For the velocity profiles
behind the equatorial plane (@ > 90°), the centrifugal forces have the
effect of an additional pressure increase in flow direction and there-
fore cause the separation point to shift forward. In figure 11 the
dimensionless torque coefficient formed according to equation (56) is
represented as a function of the spin coefficient Vp/U,. (Cf. table k.)

One sees that the proportionality with Vm/Uoo is fulfilled with very

good approximation. Finally, figure 12 shows several velocity profiles
in photographic reproduction.

A sphere is rather unsuitable for the comparison of the theoretical
calculation with test results, because of the large dead-water zone which
has the effect that even in the case of the nonrotating sphere the posi-
tions of the separation point according to theory and to measurement do
not agree when the boundary-layer calculation is based on the potential-
theoretical pressure distribution as we have done here. A valid compari-
son regarding the influence of the rotation on the behavior of the fric-
tion layer can be made only for a slender bedy where no noteworthy
dead-water zone develops. Nevertheless we mention here the measured
results of S. Iuthander and A. Rydberg 23, In figure 13 the drag coef-
ficient of the sphere in dependence on the Reynolds number Re for
various values of Vy/U, 1s given according to these measurements. For

the nonrotating sphere, Vm/UQ = 0, and up to values of Vm/Uco to about
3, the curve c, against Re shows the characteristic variation with

25Footnote 2 on page 1.
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thé familiar sudden drop at the so-called critical Reynolds number. It
is ‘known that for Reynolds numbers below the critical Reynolds number
the friction layer undergoes laminar separation, and for numbers above

- “tHe c¢ritical Reynolds number, in contrast,. a turbulent one. 1In the case

without rotation, the laminar separation point lies at about ¢ = 81°,
the turbulent one, in contrast, at about ¢ = 110° to 120°. The meas~-
urements with rotation show for Vp/U, = O to 1.4 a shifting of the

critical Reynolds numbers toward higher values of Re. This shifting
of the critical Reynolds number to higher values for small Vm/Uoo is

probably brought about by the fact that for Vm/U¢ = 0 the laminar

separation point is shifted from ¢ = 81° +to higher p-values, with the
separation still remaining laminar, however. Only for higher wvalues of
Vm/Uw, the rotation causes the friction layer to become prematurely tur-

bulent, and it then has the effect of a trip wire whereby a shifting of
the critical Reynolds number to lower Reynolds numbers takes place.

Whereas in our theoretical calculations a forward displacement of
the separation point occurs, due to the influence of the rotation, the
measurements for small values of V_ /U  indicate a shifting of the

separation point toward the rear. On the basis of the effect of the
centrifugal forces, this must be expected, if one takes into considera-
tion that in the case without rotation the laminar separation point lies,
gccording to theory, behind the equator, according to measurement, how-
ever, ahead of the equator. 1In both cases, the separation point is
shifted toward the equator by the effect of the centrifugal forces as

is to be expected, at least for small Vm/U@, as long as no premature

laminar/turbulent transition has been produced by the rotation.

(b) Bodies With a Base (Half-Bodies)

As a second example we shall now treat the so-called half-body
(body of revolution I) which originates by superposition of a transla-
tional flow on a three-dimensional source flow. If one denotes by Rp
the largest radius at infinity, the following parametric representation
for the geometrical data of the body2 is )

(66)

E—: sin

N e

2h‘For these relationships as well as for the numerical calculations
of section 5a, I am indebted to Dr. E. Truckenbrodt. The example calcu-
lations of sections 5b and ¢ are taken from the thesis of K. H. Gronau,
ig52.
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X

X tan® 3512 04 w(2 B)- 52, B 25
P tan2 1 )+sin 2+F<2,\/Z> E(z,/z) (67)

Here @ 1is the angle measured from the forward stagnation point.
F and E are the incomplete elllptlcal integrals of the first and
second kind for the modulus a = 60°.

The velocity distribution is

U-2 9\/ ___ 22 (68)
U 2
The form of the body and the velocity distribution are represented in
figure 14. This figure shows, for various values of the spin param-
eter Vﬁ/U;, the variation of the form parameter K with the distance

along the body. One sees that already for Vm/U@ ~ 1.3 only positive

values of K result. This means that due to the rotation the laminar
friction layer has become more stable because in the present case the
centrifugal forces accelerate in the direction of the flow and thus
have the effect of an additional pressure drop. We shall forego dis-
cussing here all the results. In figure 15 we have represented the

gm |20 o against the length L[R, of the half
v

o0

body. Moreover, the asymptotic solution was drawn in for comparison;
one can derive for it the relationship

Y [Ofm o L
R 8.6\/% (69)

Aside from the torque, the frictional drag also was determined.
Figure 16 presents a compilation of the torque coefficient and of the
drag coefficient in dependence on the spin parameter Vg /U, for vari-
ous body lengths L/Rm. It should be emphasized that the drag coeffi-

cient is increasing about quadratically with the spin parameter which
is in qualitative agreement with the test results that have become
known so far.

torque coefficient

25E and F signify

/2 R
F<SP_,\/3>= f / dd and E<9,‘/§> = f -/l - 2 sin? 9 ad
2V 0 Vl - % sin® 9 & ik 0 b
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(¢) Streamline Bodies

As further examples we also calculafed two streamline bodies of the

~thickness ratio D/L = 0.2 (bodies of revolution II and III). The body

" 'shapes and the pertaining velocity distributions were taken from-the .

' report of A. D. Young and E. Young2® (fig. 17). The body of revolution IT

has as a meridional section a normal profile; the body of revolution IIT,
in contrast, has a laminar profile with the velocity maximum lying rela-
tively far downstream. Of the results, figure 18 shows the torque coef-
ficient and the frictional drag coefficient as a function of the spin

- parameter V. / In both cases, there are not large differences between

the bodies. For the rest, the variation is similar to that in the case
of the body with a base, In figure 19, the position of the separation
points is shown as a function of the spin parameter Vm/U&- In agreement

with the values for the rotating sphere (cf. table 4), the separation
point shifts forward with increasing rotational speed. This displacement
is larger for the body of revolution II than for the body of revolu-

tion IIT which is made understandable by the position of the velocity
maximum. Finally, we gave for the body of revolution II a graphic repre-
sentation of the velocity distributions in the friction layer for the spin
parameters Vm/Uo° = 0 and Vm/U°o =1 (fig. 20). From it one sees that

ahead of the pressure minimum the meridional velocity component does not
vary noticeably due to the influence of the rotation whereas between the
pressure minimum and the separation point the influence of the rotatlon
is considerable.

6. SUMMARY

A calculation method is given by which the flow about a rotating
body of revolution in a flow which approaches in the direction of the
axis of rotation may be determined on the basis of boundary-layer theory.
The investigations yield a contribution to the aerodynamics of a pro-
Jectile with spin. The calculation is carried out for the laminar
boundary layer with the aid of the momentum theorem which is stated for
the meridional and for the circumferential direction. The performance
of the calculation requires the solution of two ordinary simultaneous
differential equations of the first order. It yields, in addition to
the boundary-layer parameters, the frictional drag and the torque as a
function of the dimensionless spin coefficient V /qw = clrcumferential

velocity/free—stream velocity. The displacement of the separation point

: 26A.'D. Young, E. Young, "A family of streamline bodies of revolu-
tion suitable for high-speed and low-drag requirements." ARC Report 2204,
1951.
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with the spin coefficient also is obtained. As examples, the flow about

a rotating sphere, about a body with a base, and about two streamline
bodies is treated.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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Figure 1.~ Explanatory sketch.




28 NACA ™ 1415-

u,v
U Yo
10 .

K=‘7/
476 /
osl- pas //o
-6
06 -2

>~
clc
=

04

WS

o 0.2 04 0.6 0.8 1.0

Figure 2.~ Velocity distributions in meridional and in azimuthal direction.
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and K as a function of x* according to (32) to (39).
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Figure 6.- Momentum-loss thickness 3y and wall-shear stress TXQ at the
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Figure 12.~ Photographic representation of the velocity distributions
in the boundary layer of the rotating sphere in a flow, Vy, /U, = 1,
A = separation line.
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Figure 13.- Drag coefficients of the rotating sphere in a flow as a
function of the Reynolds number, according to measurements of
3. Luthander and A. Rydberg.
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